

ColOpt Winter school March, 2019

Many-body physics in Quantum Nonlinear Optics

Francesco Piazza

(Max-Planck Institute for the Physics of Complex Systems)

Nonlinear Optics

Observation: Photons do not interact

Nonlinear Optics need a medium

which mediates interactions

First thing to study:

Interaction between light and matter

2 | Francesco Piazza

Coupling between light and matter

@ fundamental level: QED

Electron-photon scattering in vacuum

$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \simeq \frac{1}{137}$$

Coupling is weak Set by the fine-structure constant

QUESTION

Is the light-matter coupling always weak?

One solution:

- Use finite-density medium (to catch a photon)
- Use strong light fields (to affect the medium)

Lightning strike is a plasma channel. Source: Wikipedia

Example 1: Plasma

Ionised matter strongly coupled with electromagnetic field. Very complex many-body light-matter system

One solution:

- Use finite-density medium (to catch a photon)
- Use strong light fields (to affect the medium)

Example 2: Strong laser pulses

Nobel Prize 2018: Gérard Mourou and Donna Strickland for their method of generating high-intensity, ultra-short optical pulses.

High-harmonic generation with femtosecond pulses on gases [PNAS]

Nonlinear optics

Example: second harmonic generation

Fundamental principle:

a strong enough beam modifies medium (polarisability) which in turn modifies beam propagation

Classical version: nonlinear polarisability in Maxwell's equations

Equivalent picture: The medium mediates interactions between photons

$$P_i = \epsilon_0 \sum_j \chi_{ij}^{(1)} E_j + \sum_{jk} \chi_{ijk}^{(2)} E_j E_k + \dots$$

Technology:

Photon interactions are useful for **signal processing** in optics (optical modulation/switching, frequency conversion, ...) So far in the **classical regime**!

- Use finite-density medium (to catch a photon)
- Use strong light fields (to affect the medium)

Nonlinear Optics tends to be classical

• Light is classical at high intensities Interactions between coherent "lumps" of photons

Photon-lump scattering

- Use finite-density medium (to catch a photon)
- Use strong light fields (to affect the medium)

Nonlinear Optics tends to be classical

• Light is classical at high intensities Interactions between coherent "lumps" of photons

Can quantum mechanics be important?

• Interactions need to take place between single photons

Photon-by-photon scattering?

- Use finite-density medium (to catch a photon)
- Use strong light fields (to affect the medium)

Nonlinear Optics tends to be classical

Light is classical at high intensities
 Interactions between coherent "lumps" of photons

Can quantum mechanics be important?

• Interactions need to take place between single photons

Photon-by-photon scattering?

Is Quantum Nonlinear Optics interesting?

Quantum nonlinear optics: technological promise

PROSPECT:

Quantum information processing and communication

- Photons are optimal quantum information carriers
- Photon-interactions could allow for quantum information processing

The Quantum Internet

Kimble, et al., Nature 453, 1023 (2008).

- Photons transport information across channels
- Photon-interactions at the nodes process information
- Interactions rely on nonlinear optics in the quantum regime

Quantum nonlinear optics: fundamental interest

PROSPECT:

Novel many-body phenomena in quantum plasmas

- Material's degree of freedom strongly interacting with light at the level of single quanta
- Take a finite excitation density of both light and matter where collective phenomena appear

Example: single Rydberg atoms interacting with single photons

Peculiar features:

- Not in thermal equilibrium (driven-dissipative)
- Exotic interactions (retardation, sign-change, longrange)

11 | Francesco Piazza

Example: Quantum atom-photon "plasma"

Quantum nonlinear optics: overview

Quantum nonlinear optics: overview of materials

Superconducting circuits

[[]Nature 431, 162]

2D electron gases

[Science 335, 1323]

Neutral atoms

[Nature 464, 1301]

[Nature 488, 57]

Quantum nonlinear optics: overview of materials

[Nature 431, 162]

QUANTUM DEGENERATE MATTER

14 | Francesco Piazza

Quantum nonlinear optics: overview of materials

Superconducting circuits

[Nature 431, 162]

THIS TALK

2D electron gases (strongly correlated fermions)

[Science 335, 1323]

SI GaAs

- 1. Interaction between atoms and photons
- 2. Implementing Quantum nonlinear optics
- 3. Quantum nonlinear optics with quantum degenerate matter
- 4. Many-body physics with quantum atom-photon plasmas

1. Interaction between atoms and photons

Interaction of electromagnetic fields with (artificial) atoms

EM field interacts with the **electrons in the atom**

Minimal coupling: $\frac{1}{2m}(\mathbf{p}-e\mathbf{A})^2$

Hamiltonian:

$$\hat{H} = \hat{H}_{\rm el} + \hat{H}_{\rm int} + \hat{H}_{\rm field}$$

$$\begin{split} \hat{H}_{\rm el} &= \int \hat{\psi}^{\dagger}(\mathbf{x}) \left[-\frac{\nabla^2}{2m} + eV(\mathbf{x}) \right] \hat{\psi}(\mathbf{x}) d\mathbf{x} = \sum_j \epsilon_j \hat{c}_j^{\dagger} \hat{c}_j \\ \hat{H}_{\rm int} &\simeq \int \hat{\psi}^{\dagger}(\mathbf{x}) \left[-\frac{e}{m} \mathbf{A} \cdot \mathbf{p} \right] \hat{\psi}(\mathbf{x}) d\mathbf{x} = \sum_{j,k,\lambda} \hat{c}_j^{\dagger} \hat{c}_k \left(g_{\lambda j k} \hat{a}_{\lambda} + \text{h.c.} \right) \\ \hat{\psi}(\mathbf{x}) &= \sum_j \phi_j(\mathbf{x}) \hat{c}_j \quad \text{Electronic states in the atom (without EM field)} \\ g_{\lambda j k} &= -\frac{e}{m} \sqrt{\frac{1}{2\omega_\lambda \varepsilon_0}} \int \phi_j^*(\mathbf{x}) [\mathbf{u}_\lambda(\mathbf{x}) \cdot \mathbf{p}] \phi_k(\mathbf{x}) d\mathbf{x} \quad \text{Coupling strength} \end{split}$$

Interaction of electromagnetic fields with (artificial) atoms

$$g_{\lambda jk} = -\frac{e}{m} \sqrt{\frac{1}{2\omega_{\lambda}\varepsilon_{0}}} \int \phi_{j}^{*}(\mathbf{x}) [\mathbf{u}_{\lambda}(\mathbf{x}) \cdot \mathbf{p}] \phi_{k}(\mathbf{x}) d\mathbf{x}$$

Dipole approximation: $\mathbf{u}_{\lambda}(\mathbf{x}) \simeq \mathbf{u}_{\lambda}(\mathbf{x_0})$

(Photon wavelength cannot resolve electron wave function)

Transition dipole moment:
$$\mathbf{d}_{jk} = \int \phi_j^*(\mathbf{x}) e \mathbf{x} \phi_k(\mathbf{x}) d \mathbf{x}$$

Interaction of electromagnetic fields with (artificial) atoms

$$\hat{H}_{\text{int}} = \sum_{j,k,\lambda} \hat{c}_j^{\dagger} \hat{c}_k \left(g_{\lambda jk} \hat{a}_\lambda + \text{h.c.} \right)$$

$$\hat{U} = e^{-i(\hat{H}_{\rm el} + \hat{H}_{\rm field})t}$$

$$\hat{H}_{\text{int}} \to \sum_{j,k,\lambda} \hat{c}_j^{\dagger} \hat{c}_k e^{i(\epsilon_j - \epsilon_k)t} \left(g_{\lambda jk} \hat{a}_\lambda e^{-i\omega_\lambda t} + \text{h.c.} \right)$$

Rotating wave approximation:

$$\hat{H}_{\text{int}} \simeq \sum_{\epsilon_j > \epsilon_k, \lambda} \hat{c}_j^{\dagger} \hat{c}_k g_{\lambda j k} \hat{a}_{\lambda} e^{-i(\omega_{\lambda} - \epsilon_j + \epsilon_k)t} + \text{h.c.}$$

Neglect non-energy-conserving processes: oscillating fast (valid close enough to resonance)

$$e^{-i(\omega_{\lambda}+\epsilon_j-\epsilon_k)t}$$

Quantifying the strength of light-matter coupling

Materials degrees of freedom modelled a set of transitions (e.g. electron orbitals in atom)

Susceptibility

Measures the linear response of the material to a photon

$$\chi(\omega_{\lambda}) = \sum_{jk} \frac{(n_k - n_j) \left| \langle k | V_{\lambda}^{\text{pert}} | j \rangle \right|^2}{\omega_{\lambda} - \epsilon_j + \epsilon_k + i \gamma_{jk}}$$

- Must vanish for equally populated states $n_i = n_k$
- Must have a maximum on resonance $\omega_{\lambda} = \epsilon_{j} \epsilon_{k}$
- Must contain the inte

eraction matrix-element
$$\langle k|V_{\lambda}^{\mathrm{pert}}|j\rangle = g_{\lambda k j} = -\frac{e}{m}\sqrt{\frac{1}{2\omega_{\lambda}\varepsilon_{0}}}\int \phi_{k}^{*}(\mathbf{x})[\mathbf{u}_{\lambda}(\mathbf{x})\cdot\mathbf{p}]\phi_{j}(\mathbf{x})d\mathbf{x}$$

• Width of the transition set by γ_{jk}

Quantifying the strength of light-matter coupling

Materials degrees of freedom modelled a set of transitions (e.g. electron orbitals in atom)

Susceptibility

Measures the linear response of the material to a photon **Dimension of a frequency**

 $\chi(\omega_{\lambda}) = \sum_{jk} \frac{(n_k - n_j) \left| \langle k | V_{\lambda}^{\text{pert}} | j \rangle \right|^2}{\omega_{\lambda} - \epsilon_j + \epsilon_k + i \gamma_{jk}}$

Cooperativity

<u>Dimensionless</u> measure of Light-matter coupling **Multiply susceptibility by characteristic** <u>interaction time</u>

$$C(\omega_{\lambda}) = \chi(\omega_{\lambda})\tau_{\rm int}$$

Quantifying the strength of light-matter coupling: atom in free space

of the material to a photon Dimension of a frequency $\chi(\omega_{\lambda}) = \sum_{jk} \frac{(n_k - n_j) \left| \langle k | V_{\lambda}^{\text{pert}} | j \rangle \right|^2}{\omega_{\lambda} - \epsilon_j + \epsilon_k + i \gamma_{jk}}$

Cooperativity

<u>Dimensionless</u> measure of Light-matter coupling **Multiply susceptibility by characteristic <u>interaction time</u>**

 $C(\omega_{\lambda}) = \chi(\omega_{\lambda})\tau_{\rm int}$

Quantifying the strength of light-matter coupling: <u>atom in free space</u>

$$g_{\lambda} \simeq \sqrt{\frac{1}{2\omega_{\lambda}\varepsilon_{0}Ld^{2}}}\omega_{12}\tilde{d}_{12}$$
$$\tau_{\rm int} = \frac{L}{c}$$

Susceptibility

<u>Real part</u>: coherent interaction (photon dispersion) <u>Imag. part</u>: incoherent interaction (photon absorption)

$$\chi(\omega_{\lambda}) = \frac{g_{\lambda}^2}{\omega_{\lambda} - \omega_{12} + i\gamma}$$

Cooperativity

$$C(\omega_{\lambda}) = \frac{g_{\lambda}^2 L/c}{\omega_{\lambda} - \omega_{12} + i\gamma}$$

Quantifying the strength of light-matter coupling: atom in free space

$$g_{\lambda} \simeq \sqrt{\frac{1}{2\omega_{\lambda}\varepsilon_{0}Ld^{2}}}\omega_{12}\tilde{d}_{12}$$

$$au_{\rm int} = \frac{L}{c}$$

Estimate the cooperativity

(consider resonant absorption for simplicity)

$$\mathrm{Im}C_{\mathrm{res}} = \frac{g_{\mathrm{res}}^2 \frac{L}{c}}{\gamma} = \frac{g_{\mathrm{res}}^2 \frac{L}{c}}{g_{\mathrm{res}}^2 \frac{\omega_{12}^2}{c^3} \frac{d^2 L}{(2\pi)^2}} = \frac{\lambda_{12}^2}{d^2}$$

Exercise: show that

$$\gamma = g_{\rm res}^2 \frac{\omega_{12}^2}{c^3} \frac{d^2 L}{(2\pi)^2}$$

<u>Hint</u>: compute the incoherent susceptibility for an atom in a volume=d^2*L filled with a continuum of EM plane-wave modes (sum over all modes)

Quantifying the strength of light-matter coupling: atom in free space

$$g_{\lambda} \simeq \sqrt{\frac{1}{2\omega_{\lambda}\varepsilon_{0}Ld^{2}}}\omega_{12}\tilde{d}_{12}$$

$$au_{\rm int} = \frac{L}{c}$$

light cannot be focused below its wavelength

PROBLEM IN FREE SPACE:

 $|C| \ll 1$

Atom-photon coupling small!

2. Implementing Quantum Nonlinear Optics

Increasing the cooperativity

Free space problem:

 $au_{\rm int} = \frac{L}{c}$

Increase interaction time

<u>Cavities</u> Multipass enhancement

Atoms in an optical resonator

Increasing the cooperativity

Free space problem:

$$au_{\rm int} = \frac{L}{c}$$

Increase interaction time

<u>Cavities</u> Multipass enhancement

Beat the diffraction limit

<u>Evanescent fields</u> Confinement @wavelength level

Atoms in an optical resonator

Atoms close to a waveguide

Increasing the cooperativity

Free space problem:

 $au_{\rm int} = rac{L}{c}$

Increase interaction time

<u>Cavities</u> Multipass enhancement

Beat the diffraction limit

<u>Evanescent fields</u> Confinement @wavelength level

Use collective effects

Strong interatomic interactions "Superatom"

Atoms in an optical resonator

Atoms close to a waveguide

Source: Univ. Stuttgart

Rydberg atoms

Option 1 - Cavities

Interaction time Loss rate out of the mirrors

$$\tau_{\rm int} = \frac{1}{\kappa}$$

$$\operatorname{Im} C_{\operatorname{res}} = \frac{\tau_{\operatorname{int}}}{L/c} \frac{\lambda_{12}^2}{d^2} = F \frac{\lambda_{12}^2}{d^2}$$

Multipass enhancement

Determined by <u>Finesse</u> (can be as large as 10^6)

Option 1 - Cavities

<u>Interaction time</u> Loss rate out of the mirrors

$$\tau_{\rm int} = \frac{1}{\kappa}$$

$$\operatorname{Im} C_{\operatorname{res}} = \frac{\tau_{\operatorname{int}}}{L/c} \frac{\lambda_{12}^2}{d^2} = F \frac{\lambda_{12}^2}{d^2}$$

Multipass enhancement Determined by <u>Finesse</u> (can be as large as 10^6)

$$F = \frac{c}{\kappa L}$$

Cooperativity reweritten as:

Standard suggestive expression -> longer-lived state seems to help.

<u>Question</u>: why is not true?

Option 2 - Evanescent fields

Optical Nanofibers

Trapping atoms close to fiber

Photonic Crystals

Trapping atoms close to 2D structure

Exponential confinement

Transverse size can go below wavelength

Physics Physics -

Focus: Strong Light Reflection from Few Atoms

September 23, 2016 • Physics 9, 109

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits.

J. Appel/Univ. of Copenhagen

Coherent Backscattering of Light Off One-Dimensional Atomic Strings

H.L. Sørensen, J.-B. Béguin, K.W. Kluge, I. Iakoupov, A.S. Sørensen, J.H. Müller, E.S. Polzik, and J. Appel

Phys. Rev. Lett. 117, 133604 (2016)

Published September 23, 2016

Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide

Neil V. Corzo, Baptiste Gouraud, Aveek Chandra, Akihisa Goban, Alexandra S. Sheremet, Dmitriy V. Kupriyanov, and Julien Laurat

Phys. Rev. Lett. 117, 133603 (2016) Published September 23, 2016

Option 3 - Collective effects in Rydberg atoms

Blockade Radius within which only a single atom can be excited

Rydberg Blockade:
$$U\gg\gamma$$

Only one of the two atoms can be excited

Option 3 - Collective effects in Rydberg atoms

<u>Rydberg Blockade</u>: $U \gg \gamma$

Only one of the two atoms can be excited

Blockade Radius within which only a single atom can be excited

A <u>single</u> photon can saturate the whole blockade radius

"Superatom" made of $\,N_{
m b}$ atoms

$$g \to \sqrt{N_{\rm b}}g$$

Needs an active element in the medium:

Atomic degree of freedom which is nonlinearly coupled to the photon

Atomic saturation

Multiple excitations avoided Due to nonlinear level spacing

Needs an active element in the medium:

Atomic degree of freedom which is nonlinearly coupled to the photon

Atomic saturation

Multiple excitations avoided Due to nonlinear level spacing

Interatomic interactions

Example: Rydberg interaction

Needs an active element in the medium:

Atomic degree of freedom which is nonlinearly coupled to the photon

Atomic saturation

Multiple excitations avoided Due to nonlinear level spacing

Interatomic interactions

Example: Rydberg interaction

Atomic motion

Feedback between Internal and motional dynamics

Needs an active element in the medium:

Atomic degree of freedom which is nonlinearly coupled to the photon

Atomic saturation

Multiple excitations avoided Due to nonlinear level spacing

Interatomic interactions

Example: Rydberg interaction

Quantum degenerate matter (see part 3)

Atomic motion

Feedback between internal and motional dynamics

Quantum nonlinear optics from atomic saturation

Quantum nonlinear optics from atomic saturation

<u>Restricted</u> <u>Hilbert space</u>

 $\hat{c}_g^{\dagger}\hat{c}_g + \hat{c}_e^{\dagger}\hat{c}_e = 1$

Creates nonlinearity

Like an interaction

Example: Photon Blockade

Two photons cannot be absorbed/emitted at the same time.

Experiment measuring coincidences (atom in cavity)

| Francesco Piazza

Quantum nonlinear optics from atomic saturation

<u>Restricted</u> <u>Hilbert space</u>

$$\hat{c}_g^{\dagger}\hat{c}_g + \hat{c}_e^{\dagger}\hat{c}_e = 1$$

Creates nonlinearity

Like an interaction

Example: Photon Blockade

Two photons cannot be absorbed/emitted at the same time. Experiment measuring coincidences (Rydberg ensemble)

Additional tool: Electromagnetically-Induced Transparency (EIT)

Two-level atom

Strong interactions imply also large absorption

destructive interference between excitation pathways

Large coherent interactions without absorption

Technological application of quantum nonlinear optics

Example: All optical single-photon transistors

<u>Cavities</u>

Exp.: Chen ,et al., Science 341, 768 (2013)

<u>Waveguides</u>

Exp.: Sayrin ,et al., PRX 5, 041036 (2015)

Rydberg Ensembles

Exp.: Gorniaczyc, et al., Phys. Rev. Lett. 113, 053601 (2014)

3. Quantum nonlinear optics with quantum degenerate matter

Needs an active element in the medium:

Atomic degree of freedom which is nonlinearly coupled to the photon

Quantum degenerate matter

Atomic saturation

Multiple excitations avoided Due to nonlinear level spacing

Interatomic interactions

Example: Rydberg interaction

Atomic motion

Feedback between internal and motional dynamics

Recoil kick Atomic <u>center of mass</u> Still within dipole approx.

 $|e\rangle$

Recoil kick Atomic <u>center of mass</u> Still within dipole approx.

Dispersive coupling

Far-off resonant laser (Δ_a is the larges scale): Excited-state-dynamics frozen the <u>two-photon transition</u>

Far-off resonant laser (Δ_a is the larges scale): Excited-state-dynamics frozen the <u>two-photon transition</u>

Hamiltonian in real space:

$$\hat{H} = -\sum_{\lambda} \Delta_{\lambda} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda} + \int_{\mathbf{r}} \hat{\psi}_{g}^{\dagger}(\mathbf{r}) \left(-\frac{\nabla^{2}}{2m} + \hat{V}(\mathbf{r})\right) \hat{\psi}_{g}(\mathbf{r})$$

Coupling is nonlinear

Dynamical Optical potential

$$\hat{V}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + \sum_{\lambda} \left(\frac{g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r})}{\Delta_{\text{a}}} \sqrt{n_{\Omega}}\hat{a}_{\lambda} + \text{h.c.} \right) + \sum_{\lambda,\lambda'} \frac{g_{\lambda}^{*}(\mathbf{r})g_{\lambda'}(\mathbf{r})}{\Delta_{\text{a}}} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda'}$$

Recall: the dipole coupling strength

$$g_{\lambda/\Omega}(\mathbf{r}) \propto u_{\lambda/\Omega}(\mathbf{r})$$

Depends on the electromagnetic mode function computed at the position of the atom

Far-off resonant laser (Δ_a is the larges scale): Excited-state-dynamics frozen the <u>two-photon transition</u>

Hamiltonian in real space:

$$\hat{H} = -\sum_{\lambda} \Delta_{\lambda} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda} + \int_{\mathbf{r}} \hat{\psi}_{g}^{\dagger}(\mathbf{r}) \left(-\frac{\nabla^{2}}{2m} + \hat{V}(\mathbf{r})\right) \hat{\psi}_{g}(\mathbf{r})$$

Dynamical Optical potential

$$\hat{V}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + \sum_{\lambda} \left(\frac{g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r})}{\Delta_{\text{a}}} \sqrt{n_{\Omega}}\hat{a}_{\lambda} + \text{h.c.} \right) + \sum_{\lambda,\lambda'} \frac{g_{\lambda}^{*}(\mathbf{r})g_{\lambda'}(\mathbf{r})}{\Delta_{\text{a}}} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda'}$$

Exercise: derive the above Hamiltonian starting from the Jaynes-Cummings Hamiltonian.

<u>Hint</u>: assuming far-off detuned laser use the approximate representation: $\sigma^+(\mathbf{r}) \simeq \psi_g(\mathbf{r}) \psi_e^{\dagger}(\mathbf{r})$ In Heisenberg picture assume the excited state operator is in the steady state (adiabatic elimination)

Far-off resonant laser (Δ_a is the larges scale): Excited-state-dynamics frozen the <u>two-photon transition</u>

Hamiltonian in real space:

$$\hat{H} = -\sum_{\lambda} \Delta_{\lambda} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda} + \int_{\mathbf{r}} \hat{\psi}_{g}^{\dagger}(\mathbf{r}) \left(-\frac{\nabla^{2}}{2m} + \hat{V}(\mathbf{r})\right) \hat{\psi}_{g}(\mathbf{r})$$

Dynamical Optical potential

$$\hat{V}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + \sum_{\lambda} \left(\frac{g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r})}{\Delta_{\text{a}}} \sqrt{n_{\Omega}}\hat{a}_{\lambda} + \text{h.c.} \right) + \sum_{\lambda,\lambda'} \frac{g_{\lambda}^{*}(\mathbf{r})g_{\lambda'}(\mathbf{r})}{\Delta_{\text{a}}} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda'}$$

Exercise: derive the above Hamiltonian starting from the Jaynes-Cummings Hamiltonian.

<u>Hint</u>: assuming far-off detuned laser use the approximate representation: $\sigma^+(\mathbf{r}) \simeq \psi_g(\mathbf{r}) \psi_e^{\dagger}(\mathbf{r})$ In Heisenberg picture assume the excited state operator is in the steady state (adiabatic elimination)

<u>Note</u>: the \psi-operators describe the motion of the atomic COM and not of the electrons! The electron dynamics is reduced to a single-particle quantum number e/g.

Directly applicable to N atoms.

Quantum nonlinear optics with atomic motion

Cloud of laser-driven atoms

 $\hat{H} = -\sum_{\lambda} \Delta_{\lambda} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda} + \int_{\mathbf{r}} \hat{\psi}^{\dagger}(\mathbf{r}) \left(-\frac{\nabla^{2}}{2m} + \hat{V}(\mathbf{r}) \right) \hat{\psi}(\mathbf{r})$ $\hat{V}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + \sum_{\lambda} \left(\frac{g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r})}{\Delta_{\text{a}}} \sqrt{n_{\Omega}} \hat{a}_{\lambda} + \text{h.c.} \right)$ $\left(\chi(\omega_{\lambda}) = \sum_{jk} \frac{(n_{k} - n_{j}) \left| \langle k | V_{\lambda}^{\text{pert}} | j \rangle \right|^{2}}{\omega_{\lambda} - \epsilon_{j} + \epsilon_{k} + i\gamma_{jk}} \right)$

Susceptibility Measures the linear response of the material to a photon

- n_k : average occupation of the k-th atomic eigenstate in the trap V_ext
- Interaction matrix-element $\langle k|V_{\lambda}^{\text{pert}}|j\rangle = \frac{\sqrt{n_{\Omega}}}{\Delta_{a}}\int_{\mathbf{r}}\phi_{k}^{*}(\mathbf{r})g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r})\phi_{j}(\mathbf{r})$
- Width of the transition is negligible in the dispersive regime: $\,\gamma_{jk}\simeq 0$

Quantum nonlinear optics with atomic motion

Cloud of laser-driven atoms

$$\hat{H} = -\sum_{\lambda} \Delta_{\lambda} \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda} + \int_{\mathbf{r}} \hat{\psi}^{\dagger}(\mathbf{r}) \left(-\frac{\nabla^{2}}{2m} + \hat{V}(\mathbf{r}) \right) \hat{\psi}(\mathbf{r})$$
$$\hat{V}(\mathbf{r}) = V_{\text{ext}}(\mathbf{r}) + \sum_{\lambda} \left(\frac{g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r})}{\Delta_{\text{a}}} \Omega \hat{a}_{\lambda} + \text{h.c.} \right)$$
$$\chi(\omega_{\lambda}) = \sum_{jk} \frac{(n_{k} - n_{j}) \left| \langle k | V_{\lambda}^{\text{pert}} | j \rangle \right|^{2}}{\omega_{\lambda} - \epsilon_{j} + \epsilon_{k} + i\gamma_{jk}}$$

Susceptibility Measures the linear response of the material to a photon

$$n_k$$
 : average occupation of the k-th atomic eigenstate in the trap V_ext

• Interaction matrix-element $\langle k | V_{\lambda}^{\text{pert}} | j \rangle = \frac{\sqrt{n_{\Omega}}}{\Delta_{a}} \int_{\mathbf{r}} \phi_{k}^{*}(\mathbf{r}) g_{\Omega}(\mathbf{r}) g_{\lambda}(\mathbf{r}) \phi_{j}(\mathbf{r})$

- Width of the transition is negligible in the dispersive regime: $\,\gamma_{jk}\simeq 0\,$

Susceptibility of atoms in thermal equilibrium

Ultracold matter

Motional degree of freedom of atoms is extremely well controlled

Trapping and cooling of atoms down to $k_BT\sim {\rm nK}$

Quantum degenerate bosonic and fermionic ultracold gases

2 D velocity distributions

Bose-Einstein condensation (BEC)

Quantum **many-body** systems of **controlled complexity Quantum Simulation**

Perfect Fermi-Dirac distribution

Susceptibility of Quantum Matter - BEC

Cloud of laser-driven atoms

<u>Homogeneous cloud</u> V_ext=0 <u>Plane wave EM mode</u> with momentum **Q**

$$g_{\Omega}(\mathbf{r})g_{\lambda}(\mathbf{r}) = g_{\Omega}g_{\lambda}e^{i\mathbf{Q}\cdot\mathbf{r}}$$

$$\chi(\omega_{\lambda}, \mathbf{Q}) = \frac{g_{\Omega}g_{\lambda}}{\Delta_{\mathbf{a}}} \sum_{\mathbf{k}} \frac{n_{\mathbf{k}} - n_{\mathbf{k}+\mathbf{Q}}}{\omega_{\lambda} - \epsilon_{\mathbf{k}+\mathbf{Q}} + \epsilon_{\mathbf{k}} + i0^{+}}$$

$$n_{\mathbf{k}} = \frac{1}{e^{(\epsilon_{\mathbf{k}} - \mu)/k_B T} \pm 1}$$

Bose-Einstein/Fermi-Dirac distribution

Ideal BEC $n_{\mathbf{k}} = \delta_{\mathbf{k},0}$

$$\chi(\omega_{\lambda}, \mathbf{Q}) = \frac{g_{\Omega}g_{\lambda}}{\Delta_{a}} \frac{2N\epsilon_{\mathbf{Q}}}{\omega_{\lambda}^{2} - \epsilon_{\mathbf{Q}}^{2} + 2i\omega_{\lambda}0^{+}}$$

Divergence of both coherent and incoherent susceptibility At the recoil energy Rounded off by interactions

Susceptibility of Quantum Matter - Fermions

Cloud of laser-driven atoms

$$\chi(\omega_{\lambda}, \mathbf{Q}) = \frac{g_{\Omega}g_{\lambda}}{\Delta_{\mathbf{a}}} \sum_{\mathbf{k}} \frac{n_{\mathbf{k}} - n_{\mathbf{k}+\mathbf{Q}}}{\omega_{\lambda} - \epsilon_{\mathbf{k}+\mathbf{Q}} + \epsilon_{\mathbf{k}} + i0^{+}}$$

Fermi-Dirac distribution

$$n_{\mathbf{k}} = \frac{1}{e^{(\epsilon_{\mathbf{k}} - \mu)/k_B T} + 1}$$

Crucial role of dimensionality

Crucial role of density (E_F)

Absorption-less windows

Susceptibility of Quantum Matter - Fermions

Cloud of laser-driven atoms

$$\chi(\omega_{\lambda}, \mathbf{Q}) = \frac{g_{\Omega}g_{\lambda}}{\Delta_{\mathbf{a}}} \sum_{\mathbf{k}} \frac{n_{\mathbf{k}} - n_{\mathbf{k}+\mathbf{Q}}}{\omega_{\lambda} - \epsilon_{\mathbf{k}+\mathbf{Q}} + \epsilon_{\mathbf{k}} + i0^{+}}$$
Fermi-Dirac distribution
$$n_{\mathbf{k}} = \frac{1}{e^{(\epsilon_{\mathbf{k}} - \mu)/k_{B}T} + 1}$$

Example in d=1 Divergent dispersion Without absorption Cfr. BEC-case

+ fermions can be effectively non-interacting

Potential for extreme single-photon nonlinearity

4. Many-body physics with quantum atom-photon plasmas

Quantum plasma of photons and neutral atoms

	Ultracold Atoms	Photons	Plasma
Boundary Conditions	Isolated	Driven Dissipative	Driven+Dissipative with atom number cons.
Interactions	Short range	Х	Long range, Retarded, Non-conservative
Tuneability	Trapping, Inter. strength	Boundary conditions	Inter. shape (time&space), Boundary conditions

Unusual combination of complex features:

Wealth of unexplored phenomena

Optimal **methods need to be developed** combining :

quantum field theory, quantum optics, non-equilibrium open system theory

Many-body nonlinear quantum optics

Particles/spins coupled to few optical modes

- Particle number conserved
- Dissipative interactions mediated by photons

Propagating photons in a medium of dipoles

- Particle number and energy not conserved
- Interactions inherited from matter

Many-body nonlinear quantum optics

Non-equilibrium diagrammatic approach to strongly interacting photons

Attempt at formulating "a QED for optically dense media"

- no charges but static dipoles
- non-relativistic
- non perturbative regime

Quantum many-body phases of light

with matter-mediated interactions

Moving photons, medium of dipoles

- Particle number and energy not conserved
- Interactions inherited from matter

- "Non-equilibrium diagrammatic approach to strongly interacting photons" J. Lang, D. E. Chang, FP, arXiv:1810.12921 (2018)
 - "Interaction-induced transparency for strong-coupling polaritons"
- J. Lang, D. E. Chang, FP, arXiv:1810.12912 (2018)

4a. Superradiant crystals and magnets

Nature of the interactions between driven atoms and confined photons

Coupling via two-photon transition:

$$\hat{H}_{ca} = \int_{\mathbf{r}} \frac{\Omega^*(\mathbf{r})g(\mathbf{r})}{\Delta_A} \hat{a}\hat{\psi}_g^{\dagger}(\mathbf{r})\hat{\psi}_g(\mathbf{r}) + \text{h.c.}$$

Photon-mediated interactions

Shaping the photon mediated interactions

General case

A whole set of electromagnetic modes is available

$U(\mathbf{r},\mathbf{r}') = -\sum_{\alpha} \frac{\Omega^*(\mathbf{r})\Omega(\mathbf{r}')g_{\alpha}^*(\mathbf{r}')g_{\alpha}(\mathbf{r})}{\Delta_A^2} \frac{|\Delta_{\alpha}|}{\Delta_{\alpha}^2 + \kappa_{\alpha}^2}$

Near-planar cavity

 $U(\mathbf{r},\mathbf{r}') \propto -\cos(k_0 x)\cos(k_0 x')\cos(k_0 y)\cos(k_0 y')$

Translation invariance is discrete: Z_2 even-odd sites of chequerboard

 $U(\mathbf{r},\mathbf{r}') \propto -\cos(k_0(x-x'))\cos(k_0y)\cos(k_0y')$

Translation invariance is continuous along x

Shaping the photon mediated interactions

General case A whole set of electromagnetic modes is available Near-planar cavity $U(\mathbf{r}, \mathbf{r}')$

 $U(\mathbf{r},\mathbf{r}')$

 y_{\blacktriangle}

Ring cavity

$$U(\mathbf{r},\mathbf{r}') = -\sum_{\alpha} \frac{\Omega^*(\mathbf{r})\Omega(\mathbf{r}')g_{\alpha}^*(\mathbf{r}')g_{\alpha}(\mathbf{r})}{\Delta_A^2} \frac{|\Delta_{\alpha}|}{\Delta_{\alpha}^2 + \kappa_{\alpha}^2}$$

$$U(\mathbf{r},\mathbf{r}') \propto -\cos(k_0 x)\cos(k_0 x')\cos(k_0 y)\cos(k_0 y')$$

Translation invariance is discrete: Z_2 even-odd sites of chequerboard

Interesting physics:

Interactions are infinitely-long ranged and periodically sign-changing Tendency toward crystallisation

$$U(\mathbf{r},\mathbf{r}') \propto -\cos(k_0(x-x'))\cos(k_0y)\cos(k_0y')$$

Translation invariance is continuous along x

Crystallisation of quantum matter: experimental observation

NATURE Vol 464 29 April 2010 Even sites O Odd sites

• Laser-driven **Bose-Einstein condensate** inside an **near-planar cavity**

Exp @ETH [Nature 464 (2010)], @Hamburg [PRL 113 (2014)]

• Spatial ordering above a certain laser intensity i.e. interaction strength $U(\mathbf{r}, \mathbf{r}') \propto -\cos(k_0 x) \cos(k_0 x') \cos(k_0 y) \cos(k_0 y')$

• Simplest example of light-mediated crystallisation

Z_2 Translation invariance spontaneously broken: Choice between even-odd sites of chequerboard

Crystallisation of quantum matter: experimental observation

NATURE Vol 464 29 April 2010 Even sites O Odd sites

• Laser-driven **Bose-Einstein condensate** inside an **near-planar cavity**

Exp @ETH [Nature 464 (2010)], @Hamburg [PRL 113 (2014)]

• Spatial ordering above a certain laser intensity i.e. interaction strength $U(\mathbf{r}, \mathbf{r}') \propto -\cos(k_0 x) \cos(k_0 x') \cos(k_0 y) \cos(k_0 y')$

• Simplest example of light-mediated crystallisation

Z_2 Translation invariance spontaneously broken: Choice between even-odd sites of chequerboard

Extension to continuous translation symmetry:

Provided the first unambiguous experimental realisation of a supersolid!

Experimental observation with bosonic atoms

Dicke-Peierls super-radiance in ID

Magnetic models with photon-mediated interactions

AFM phase predicted

[F.Mivehvar, FP, H.Ritsch PRL 119, 063602 (2017)]

Recently observed in experiment @ Stanford

[R.M. Kroeze, et al., PRL 121, 163601 (2018)]

Shaping the photon mediated interactions

General case

$$U(\mathbf{r},\mathbf{r}') = -\sum_{\alpha} \frac{\Omega^*(\mathbf{r})\Omega(\mathbf{r}')g_{\alpha}^*(\mathbf{r}')g_{\alpha}(\mathbf{r})}{\Delta_A^2} \frac{|\Delta_{\alpha}|}{\Delta_{\alpha}^2 + \kappa_{\alpha}^2}$$

electromagnetic modes is available

A whole set of

Shaping the photon mediated interactions

General case

$$U(\mathbf{r},\mathbf{r}') = -\sum_{\alpha} \frac{\Omega^*(\mathbf{r})\Omega(\mathbf{r}')g_{\alpha}^*(\mathbf{r}')g_{\alpha}(\mathbf{r})}{\Delta_A^2} \frac{|\Delta_{\alpha}|}{\Delta_{\alpha}^2 + \kappa_{\alpha}^2}$$

electromagnetic modes is available

A whole set of

Interaction potential (transverse plane)
$$U(\mathbf{x}, \mathbf{x}') = -\frac{g_0^2}{\Delta_a^2} \Omega^*(\mathbf{x}) \Omega(\mathbf{x}') \times \frac{1}{4\pi\tilde{\epsilon}} K_0 \left(\sqrt{\frac{2}{\tilde{\epsilon}}} \left| \frac{\mathbf{x} - \mathbf{x}'}{w_0} \right| \right)$$

Shaping the photon mediated interactions: Confocal Cavity

Finite-range cavity-mediated interactions

Example:

Two standing-wave pumps with orthogonal polarisation

$$\Omega(x,y) = \vec{e}_1 \cos(2\pi x/\lambda) + \vec{e}_2 \cos(2\pi y/\lambda)$$
$$\vec{e}_1 \perp \vec{e}_2$$

Geometry (Z4 Symmetry)

• Interaction potential minima (Yellow)

Interaction potential

Finite-range cavity-mediated interactions

Example:

Two standing-wave pumps with orthogonal polarisation

$$\Omega(x,y) = \vec{e}_1 \cos(2\pi x/\lambda) + \vec{e}_2 \cos(2\pi y/\lambda)$$
$$\vec{e}_1 \perp \vec{e}_2$$

Geometry (Z4 Symmetry)

• Interaction potential minima (Yellow)

Interaction potential

Generic properties

- Sign-changing potential
- Absolute minimum <u>always</u> at zero distance