Controlling light and matter using cooperative radiation Part II: 2D single-layer surfaces

#### Susanne Yelin

University of Connecticut Harvard University

Herrsching, March 7, 2019

# Idea

# Mirror, consisting of

- single atomic layer,
- dilute,
- couples strongly to single photons,
- nonlinear, ...

# Quantum optics with atomically thin materials



- can have very strong optical response
- optical response can be engineered
- guided modes can be constructed for 2d materials, e.g., for topological phenomena

"atomic metasurfaces"

# Simple example: Idea & Setup

#### array of atoms



#### **Complete Reflection!**

a ~ λ

for  $a/\lambda = 0.2$ and  $a/\lambda = 0.8$ 

> Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017) cf. Bettles, Gardiner, Adams, PRL **116**, 103602

# Simple example: Idea & Setup

#### array of atoms



# Simple example: Idea & Setup

#### array of atoms



$$\mathsf{E}_{out} = \mathsf{E}_0 \left( e^{ik_z z} + S e^{ik_z |z|} \right)$$

S = -1

Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017)

7

• compare to reflection/transmission of single atom



 compare to reflection/transmission of single atom  $(1+s)\mathbf{E}_{in}$  $\mathbf{E}_{\mathrm{in}}$  $s \mathbf{E}_{in}$  $E_{out} = E_0 \left( e^{ik_z z} + S e^{ik_z |z|} \right)$  $\mathsf{S} = -\frac{\mathsf{i}}{2}\frac{\mathsf{i}}{\delta + \frac{\mathsf{i}}{2}\gamma}$  $\Rightarrow$  S = -1 for  $\delta$  = 0

$$\begin{split} \mathsf{E}_{\text{out}} &= \mathsf{E}_{0} \left( e^{\mathsf{i} k_{z} z} + \mathsf{S} e^{\mathsf{i} k_{z} |z|} \right) \\ \mathsf{S} &= -\frac{\mathsf{i}}{2} \frac{\gamma + \Gamma_{\text{coll}}}{\delta + \Delta_{\text{coll}} + \frac{\mathsf{i}}{2} \left( \gamma + \Gamma_{\text{coll}} \right)} \end{split}$$

where  $\Delta_{coll} - \frac{i}{2}\Gamma_{coll} = \frac{dipolar interaction}{between all atoms}$ Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017)

# Form of collective terms

Sum up all dipole-dipole interactions for each atom with all others:

$$\Delta - \frac{i}{2}\Gamma = -\frac{3}{2}\gamma\lambda\sum_{n\neq 0}G(0,\mathbf{r}_n),$$

Analytical/Numerial form depends on lattice symmetry — But: only for  $\Delta$ , not for  $\Gamma$ :

$$\Gamma = \gamma \frac{3}{4\pi} \left(\frac{\lambda}{a}\right)^2 - \gamma$$

for all lattices!

$$\begin{split} & \left[ \mathsf{E}_{\mathsf{out}} = \mathsf{E}_0 \left( \mathsf{e}^{\mathsf{i}\mathsf{k}_z z} + \mathsf{S}\mathsf{e}^{\mathsf{i}\mathsf{k}_z |z|} \right) \right] \\ & \mathsf{S} = -\frac{\mathsf{i}}{2} \frac{\gamma + \Gamma_{\mathsf{coll}}}{\delta + \Delta_{\mathsf{coll}} + \frac{\mathsf{i}}{2} \left( \gamma + \Gamma_{\mathsf{coll}} \right)} \\ & \Rightarrow \mathsf{S} = -1 \quad \mathsf{for} \quad \delta + \Delta_{\mathsf{coll}} = \mathsf{0} \\ & \left[ \Delta_{\mathsf{coll}} - \frac{\mathsf{i}}{2} \Gamma_{\mathsf{coll}} \right] = \begin{array}{c} \mathsf{dipolar\ interaction} \\ \mathsf{between\ all\ atoms} \end{array} \right] \end{split}$$

where

Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017)







# 3D setup



# Incoming light with all polarizations from all directions

### **Experiments**?

With non-radiative losses:

$$\mathsf{S} = -\frac{\mathsf{i}}{2} \frac{\gamma + \Gamma_{\mathsf{coll}}}{\delta + \Delta_{\mathsf{coll}} + \frac{\mathsf{i}}{2} \left(\gamma_{\mathsf{nr}} + \gamma + \Gamma_{\mathsf{coll}}\right)}$$

For large  $\Delta_{coll}$  and  $\Gamma_{coll}$ , non-radiative losses don't play a role!

### Perfect Reflection - 3D

$$\frac{\gamma + \underline{\Gamma}_{\text{coll}}}{\delta + \underline{\Delta}_{\text{coll}} + \frac{\mathrm{i}}{2} \left(\gamma + \underline{\Gamma}_{\text{coll}}\right)}$$



#### Dispersion relation of collective surface dipole excitations





#### Dispersion relation of collective surface dipole excitations



# 3D setup



# 3D setup



# Implementations

#### Examples:

• atoms in optical lattice





Markus Greiner

# Implementations

#### Examples:

atoms in optical lattice





Markus Greiner

solid state 2D semiconductors

# Implementation in solid state 2D

# Excitons in transition metal dichalcogenides (MoS<sub>2</sub>, WSe<sub>2</sub>, ... )



# Implementation in solid state 2D

# Excitons in transition metal dichalcogenides (MoS<sub>2</sub>, WSe<sub>2</sub>, ... )



# Reflection measurements in MoSe<sub>2</sub>

Monolayer is excellent reflector near exciton resonance





Scuri, Zhou, High, Wild, Shu, De Greve, Jauregui, Taniguchi, Watanabe, Kim, Lukin, Park, PRL **120**, 037402 Back, Zeytinoglu, Ijaz, Kroner, Imamoğlu, PRL **120**, 037401

# Reflection measurements in MoSe<sub>2</sub>

• Monolayer is excellent reflector near exciton



# **Outlook:quantum optical metamaterials**

Metamaterials: Bottom-up design of <u>collective</u> response

|                        | Classical photonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quantum: 2D atom array                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Building<br>blocks     | nano-resonators/antennas   Image: Construction of the second sec | individual atoms<br>a $\lesssim \lambda$<br>Quantum objects:<br>highly nonlinear, extremely light |
| Designed<br>properties | beam profile, phase,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Quantum states of light                                                                         |

#### The vision: Optical tool made of quantum matter

# This talk

- Cooperative effects in complex systems
- New application: atomically thin mirrors
  - Cooperative resonances
  - Applications
    - topology with photons
    - nonlinear quantum optics
    - Quantum metasurfaces

# 3D setup



# Single-photon manipulation: an example

• Starting point: one impurity excitation in lattice



# Single-photon manipulation: an example

• Emission into collective surface modes:


#### Single-photon manipulation: an example

 One excitation in the lattice: no directional emission



#### Single-photon manipulation: an example

- Better: couple mode out adiabatically
- modulate lattice



#### Single-photon manipulation: an example

Better: couple mode out adiabatically



#### Increase (impurity) cross section?



#### Increase (impurity) cross section?

#### Increase (impurity) cross section?



#### Impurity + Array Scattering



Impurity + Array???

#### Increase (impurity) cross section

- Factor of η~2 enhancement (near-field)
- Multiple orders of magnitude enhancement resonant



#### Impurity + Array Scattering



#### **Outlook: impurities on lattice**

- Single atom: perfect nonlinearity
  - Use impurities as single atoms
  - ➡ find transmission g<sup>(2)</sup>(0) function

#### **Outlook: impurities on lattice**

- Single atom: perfect nonlinearity
  - Use impurities as single atoms
  - ➡ find transmission g<sup>(2)</sup>(0) function
- Make networks of impurity "qubits" on array

#### Topological quantum nonlinear systems: the idea

- 2D honeycomb lattice of atoms with sub-wavelength spacing
- 3-level atoms with  $\sigma$ + and  $\sigma$  transitions (V-system)



Out-of-plane magnetic field induces Zeeman-shifts

#### Band structure of honeycomb lattice



no bandgap, but Dirac point

#### Band structure of honeycomb lattice



• bandgap opens  $\Rightarrow$  non-zero Chern numbers





#### Band structure of honeycomb lattice



bandgap opens ⇒ non-zero Chern numbers

 $\Rightarrow$  Edge states!

#### New idea: topological quantum optics



Perczel, Borregaard, Chang, Pichler, Yelin, Zoller, Lukin, PRL 119, 023603 (2017) see also: Bettles, Minar, Lesanovsky, Adams, Olmos, arXiv:1703.03351

# Nonlinear optics: Emitter proximal to mirror



(Wild, Shahmoon, Yelin, Lukin, PRL **121**, 123606 (2018)



(Wild, Shahmoon, Yelin, Lukin, PRL **121**, 123606 (2018)



(Wild, Shahmoon, Yelin, Lukin, PRL **121**, 123606 (2018)





#### **New experiment**



"Controlling Excitons in an Atomically Thin Membrane with a Mirror," Zhou et al., arXiv:1901.08500

#### **New experiment**



"Controlling Excitons in an Atomically Thin Membrane with a Mirror," Zhou et al., arXiv:1901.08500

#### **New experiment**



"Controlling Excitons in an Atomically Thin Membrane with a Mirror," Zhou et al., arXiv:1901.08500

**Quantum nonlinearity** 

Account for interaction of radiators (of strength  $\chi$ ):





**Quantum nonlinearity** 

Account for interaction of radiators (of strength  $\chi$ ):



#### **Optomechanics**

## Light → motion: light-induced collective motion

 Motion → light: Motion-induced multimode nonlinear optics



Experiments by Regal, Lehnert, Harris, Painter,...

#### Optomechanics of 2D atom array in free space

- Light → motion: light-induced collective motion
- Motion → light: Motion-induced multimode nonlinear optics



#### Mechanical modes



#### **Mechanical modes**



Shahmoon, Lukin, Yelin, arXiv:1810.01052

#### Optomechanics with lightest possible mirror?

Cavity

$$\Omega \longrightarrow \left( \begin{array}{c} \kappa & \boldsymbol{\swarrow} \\ \hat{c}, \boldsymbol{\omega}_{c} \\ \hat{c}, \hat{\omega}_{c} \end{array} \right)$$

- single-mode oscillator
- bulk mirror
- 10<sup>-14</sup> m zero-point motion
- optical cavity (single-mode)



- multi-mode oscillator
- a few atoms
- 10<sup>-8</sup> m zpm
- collective atomic dipole

(multi-mode)

#### **Collective mechanical sidebands**



#### $v_0$ : fundamental mechanical frequency

Shahmoon, Lukin, Yelin, arXiv:1810.01063, Shahmoon, Lukin, Yelin, arXiv:1810.01052

#### **Collective mechanical sidebands**



#### **Collective mechanical sidebands**



### Application: quantum squeezing of reflected field

Two-mode squeezing: measure correlation using homodyne detection



Shahmoon, Lukin, Yelin, arXiv:1810.01063 Shahmoon, Lukin, Yelin, arXiv:1810.01052
## Nonlinear optics: Squeezing of reflected field





## **Outlook: Stronger nonlinearities?**



### Superposition of atomic mirrors...

#### Example: cat state













#### **Realization with Rydberg EIT**



"Quantum Metasurfaces," Bekenstein, Pikovski, Pichler, Shahmoon, Yelin, Lukin, in prep.

### **Realization with Rydberg EIT**



#### Use Rydberg blockade ⇒ **one atom** detunes from EIT **for whole array**!

"Quantum Metasurfaces," Bekenstein, Pikovski, Pichler, Shahmoon, Yelin, Lukin, in prep.

### **Realization with Rydberg EIT**



#### Use Rydberg blockade $\Rightarrow$ one atom detunes from EIT for whole array!

"Quantum Metasurfaces," Bekenstein, Pikovski, Pichler, Shahmoon, Yelin, Lukin, in prep.

### Outlook

- Quantum nonlinear optics: engineering multiphoton entanglement
- Photonic cluster & tensor network states: applications to robust quantum networking
- Engineering matter states via sub-radiant protections

### Summary

- Concept ... ...and applications of superradiance 0.8 75 65 0.6 55  $\frac{10}{\theta}$ • Concept ... 40 0 5 -5
  - ... and applications of atomically thin arrays



