

Making the most of interference:

the application of laser speckle and computer-generated holography to cold atoms, optical trapping and precision metrology

Graham D. Bruce University of St Andrews

🈏 @grahamdbruce

ColOpt Winter School on collective effects, structured light and quantum matter

7th March 2018

University of St Andrews

600 YEARS

1413 - 2013

8000 students at University 47% from outside UK Physics: 40 academic staff; 60 research staff; 80 PhD students http://www.st-andrews.ac.uk/ physics/index.php

Cold Atoms Group

Sci Rep **5,** 14729 (2015) Rev Sci Inst **86,** 093108 (2015)

J Phys B 50, 095002 (2017)

Opt Express **25,** 11692 (2017) Opt Express **23,** 8365 (2015) Opt Express **22,** 26548 (2014)

New J Phys **18** 075012 (2016) Phys Rev A **94** 051601 (2016)

JOSA B **34**, C14 (2017) Phys Rev A **94**, 053821 (2016)

Nature Comm **4**, 2374 (2013)

Opt Lett **44** 1367 (2019) Nature Comm **8**, 15610 (2017) Opt Lett **39** 96 (2014)

How much control do we have over optical trapping geometry?

(not necessary for microparticles)

Can be modulated at MHz rates

Kishan Dholakia Professor of Optical Manipulation St Andrews

Arthur Ashkin Father of Optical Tweezers Nobel Prize 2018

Computer Generated Holography

Computer Generated Holography

Calculating Holograms

Direct Binary Search Algorithm

Cost Function Minimisation

Example cost function: $C = T - |E_{out}|^2$ Iterative, unguided optimisation

Iterative Fourier Transform Algorithm

Iterative Fourier Transform Algorithm

Iterative Fourier Transform Algorithm

Pasienski and DeMarco, Opt Expr 16, 2176 (2008).

MRAF Algorithm

i = 116

SLM plane

Fourier plane

Inducing Superflow

GB et al, Physica Scripta T143, 014008 (2011)

Experimental implementation

GB et al, J Phys B 48, 115303 (2015)

Quality progression within 10 iterations.

Can use atoms as a probe!

 87 Rb BEC, 10⁵ atoms, T/T_c ~ 0.1

Multi-wavelength holography

Remember, we use the SLM like a diffraction grating, and separate our pattern of interest from the unmodulated light

Multi-wavelength holography

λ = 1064nm

λ = 780nm

Multiwavelength Holography

Bernier et al, PRA 79, 061601 (2009).

D Bowman et al Opt Express 23, 8365 (2015)

Steepest Descent

Cost Function Minimisation

- Move along a line, initially perpendicular to the contour (steepest descent)
- 2. Stop when I am parallel to nearest contour
- 3. Change direction to move perpendicular to contour and repeat until I reach the minimum

Conjugate gradient

Wouldn't it be better if we could avoid going back over the same directions?

We could take the conjugate direction!

Conjugate gradient

Contours of *C* (Basis is the SLM pixels)

(also known as the C-orthogonal direction)

- Guarantees convergence in fewer than *N* steps, where *N* is the size of my basis vector (number of SLM pixels)
- Robust against initial position
Cost Function Choice

The power of this approach is flexibility in cost function choice.

T Harte et al., Opt Express 22, 26548 (2014)

Controlling Amplitude and Phase

 Clearly, to achieve smooth potentials, control over amplitude and phase is desirable

$$C_{a} = \sum_{nm} \left(T_{nm} - |E_{out,nm}|^{2} \right)^{2} \qquad C_{3} = 10^{d} \left(1 - \sum_{n,m} \operatorname{Re} \left\{ \left| \tilde{\tau}_{n,m}^{*} \tilde{E}_{n,m}^{out} \right| \right\} \right),$$
$$= 10^{d} \left(1 - \sum_{n,m} \sqrt{\tilde{I}_{n,m} \tilde{T}_{n,m}} \cos \left(\Phi_{n,m} - \varphi_{n,m} \right) \right)^{2}$$

b Möbius strip (85 sites)

d Cone (100 sites)

f Eiffel tower (126 sites)

Controlling Amplitude and Phase

• With this method, we can produce completely uncorrelated images in amplitude and phase

 Furthermore, phase can be used to provide additional forces on trapped objects

Holographic Optical Potentials

Topological Kondo Qubits

$$H^{\alpha} = \int_{0}^{L} dx \left[\frac{\hbar^{2}}{2m} \partial_{x} \Psi_{\alpha}^{+}(x) \partial_{x} \Psi_{\alpha}(x) + \frac{c}{2} \Psi_{\alpha}^{+}(x) \Psi_{\alpha}^{+}(x) \Psi_{\alpha}(x) \Psi_{\alpha}(x) \right],$$

$$H = -i\frac{\hbar v_F}{2\pi} \sum_{\alpha=1}^{M} \int dx \psi_{\alpha}^{+}(x) \partial_x \psi_{\alpha}(x) - \lambda \sum_{\alpha\neq\beta} \gamma_{\alpha} \gamma_{\beta} \psi_{\alpha}^{+}(0) \psi_{\beta}(0)$$

Can you put it all together?

How can phase exert a force?

Structured light can possess angular momentum: rotation

$$j = \varepsilon_o \left[r \times \langle E \times B \rangle \right]$$

Allen et al Phys Rev A (1992)

Orbital: due to inclined wavefronts

Iħ per photon

Laguerre-

Gaussian

(LG) beam

These tilted phase fronts can also exert linear momentum

trapping beam (1070nm)

Mazilu et al., Phys Rev A 94, 053821 (2016)

Structured light can possess angular momentum: rotation

$$j = \varepsilon_o \left[r \times \langle E \times B \rangle \right]$$

Allen et al Phys Rev A (1992)

Spin: due to polarisation state (rotating E-field)

Laguerre-Gaussian (LG) beam

Circularly polarized beam Spin angular momentum

NBC NEWS SCIENCE F V N

TOPICS Space Environment Innovation Weird science

COSMICLOG

rose above New York's 9/11 nightmare

NEW SPACE

Scientists create fastest-spinning man-made object ever

Tia Ghose, LiveScience

How Ground Aug. 29, 2013 at 12:39 PM ET Zero's supertower Scientists have create

Scientists have created a microscopic sphere and set it awhirl at a blistering 600 million rotations per minute.

The sphere, which rotates 500,000 times faster than the average washing machine, is the **fastest-spinning object** ever made.

Arita et al. Nature Comm 4, 2374 (2013)

Guinness book of world records 2015 (fastest man-made rotation)

The Bose-Hubbard Model

$$\mathcal{H}_B = -t \sum_{\langle ij \rangle} (\hat{b}_i^{\dagger} \hat{b}_j + \hat{b}_j^{\dagger} \hat{b}_i) - \mu \sum_i \hat{n}_i + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1)$$

shameless plug...

Is speckle useful for anything other than just adding disorder?

Measuring motion of a subject

Zalevsky et al, Opt Express 24 21566 (2009)

Alternatively, apply a vibration to the subject and measure response. Used in detecting: Faults in airplane wings Breast tumours

- Voids behind walls
- X-Box Kinect

Measuring motion within the subject

https://youtu.be/iH90scynV8Q?t=45s

$$K = \frac{\sigma}{\langle I \rangle}$$

Laser Speckle Contrast Imaging / The Biospeckle Laser: direct, non-destructive, wide-field image -> velocity distribution map

Boas and Dunn, JBO 15 011109 (2010)

Measuring motion within the subject

Briers et al, JBO 18 066018 (2013)

- Opthalmology
- Migraine studies

Measuring motion within the subject

Watching paint dry...

Moreira et al, Opt. Las. Engin. 61 8 (2014)

Concept

- Speckle pattern 'randomization'
 Coherence of field preserved
 Interference marker for wavelength
- Interference changes with $\Delta\lambda$ yields unique speckle pattern

But how can we extract λ from the pattern?

Wavelength Measurement ABOVE the Correlation Bandwidth

- What is the relationship between the speckle pattern and the wavelength? It depends on the microscopic detail of the scattering medium
- Take a <u>data-driven</u> approach to the analysis

Wavelength Measurement ABOVE the Correlation Bandwidth

- What is the relationship between the speckle pattern and the wavelength? It depends on the microscopic detail of the scattering medium
- Take a <u>data-driven</u> approach to the analysis

Wavelength Measurement ABOVE the Correlation Bandwidth

- What is the relationship between the speckle pattern and the wavelength? It depends on the microscopic detail of the scattering medium
- Take a data-driven approach to the analysis

Limitations of TMM

- What is the relationship between the speckle pattern and the wavelength? It depends on the microscopic detail of the scattering medium
- Take a <u>data-driven</u> approach to the analysis

Can we beat the correlation bandwidth?

- What is the relationship between the speckle pattern and the wavelength? It depends on the microscopic detail of the scattering medium
- Take a <u>data-driven</u> approach to the analysis Sometimes the answer requires a change of perspective...

Principal Component Analysis

- What is the relationship between the speckle pattern and the wavelength? It depends on the microscopic detail of the scattering medium
- Take a <u>data-driven</u> approach to the analysis
 Sometimes the answer requires a change of perspective...

Principal Component Analysis is a mathematical process that is defined as a rotation that transforms the data to a new coordinate system, such that the greatest variance by any projection of the data comes to lie on the first coordinate (called 1st Principal Component), and so on..

Principal Component Analysis

• We need to consider the covariance matrix:

$$\sigma_{AB}^2 = \frac{1}{n} A B^T$$

$$\begin{pmatrix} 0.646 & -0.621 & -0.004 & 0.189 \\ -0.621 & 0.630 & 0.010 & -0.189 \\ -0.004 & 0.010 & 0.055 & -0.010 \\ 0.189 & -0.189 & -0.010 & 0.076 \end{pmatrix}$$

 We want to find a new <u>basis</u>, where covariances are zero, and variances are ranked from smallest to largest

i.e. the eigenbasis!

Principal Component Analysis

Projecting the data onto the new basis gives the principal components

Extracting the Wavelength

We transform our data to the new basis, comprising its principal components (PCs)

PC1 varies linearly with wavelength (Proportionality constant acquired through a calibration measurement)

Importantly, the linear dependence means we can interpolate between calibration points
So what's being measured?

Broadband performance (using TMM)

Precision

Sinusoidal current modulation of an ECDL

GB et al Opt. Lett. 44, 1367-1370 (2019)

Integrating Sphere Wavemeter Acquisition Rate

Ti:Sa top-of-fringe locked to rubidium spectroscopy with 24 kHz dither to laser current.

Environmental insensitivity

GB et al Opt. Lett. 44, 1367-1370 (2019)

Integrating Sphere Wavemeter Summary

Speckle Stabilization

Sometimes, just knowing the wavelength isn't enough, and we really want to control it!

Speckle Stabilization

Speckle Stabilization

- <u>Tuning Range</u>: Infinite (arbitrary lock point)
- <u>Capture Range:</u> 30 MHz
- Linewidth: 800 kHz over 10s
- <u>Instability:</u> 2x10⁻⁹ over 10s, without thermal or vibration management
- Lock Update Rate: 200 Hz

Speckle Stabilization:

Riis / Arnold / Griffin group Strathclyde

Tracking multiple wavelengths

Find Out More...

www.opticalmanipulationgroup.com

